Aller au contenu principal

Uniform law

info

This section is waiting for contributions.

Definition

Definition

Let a,bRa, b \in \mathbb{R} with a<ba < b. XX follows the uniform law on the interval [a,b][a, b] if its density is :

fX(x)=1ba1[a,b](x).f_X(x) = \frac{1}{b-a}\mathbb{1}_{[a, b]}(x).

We note XU([a,b])X \sim \mathcal{U}([a, b]).

Results

Proposition : Uniform law's characteristic function

Let XX be a random variable. If XU([a,b])X \sim \mathcal U([a,b]), the characteristic function of XX is

ϕX(t)=eitbeitait(ba).\phi_X(t) =\frac{e^{itb} - e^{ita}}{it(b-a)}.