Skip to main content

Exponential law

info

This section is waiting for contributions.

Definition

Definition

Let λ>0\lambda > 0. XX follows the exponential law with parameter λ\lambda if its density is :

fX(x)=λeλx1R+(x).f_X(x) = \lambda e^{-\lambda x}\mathbb{1}_{\mathbb{R}^+}(x).

We note XE(λ)X \sim \mathcal{E}(\lambda)

Results

Proposition : Exponential law's characteristic function

Let XX be a random variable. If XE(λ)X \sim \mathcal E(\lambda), the characteristic function of XX is

ϕX(t)=λλit\phi_X(t) = \frac{\lambda}{\lambda - it}