CombinatoricsBinomial coefficientOn this pageBinomial coefficientDefinitionDefinitionLet nnn and ppp be two natural integers, we call binomial coefficient, and we note (np)\binom{n}{p}(pn), the following number(np)=n!p!(n−p)!\binom{n}{p} = \frac{n!}{p!(n-p)!}(pn)=p!(n−p)!n!RemarkFor all n∈Nn \in \mathbb Nn∈N, we have (n0)=(nn)=1\binom{n}{0} = \binom{n}{n} = 1(0n)=(nn)=1ResultsPropositionFor all (n,p)∈N2(n, p) \in \mathbb N^2(n,p)∈N2 such that n≥p≥1n \geq p \geq 1n≥p≥1, we have(np)=np(n−1p−1)=n−p+1p(np−1)\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1} = \frac{n-p+1}{p}\binom{n}{p-1}(pn)=pn(p−1n−1)=pn−p+1(p−1n)ProofIt is straightforward from the definition by putting ppp in the denominator and in the numerator the first or the last term.PropositionLet nnn and ppp be two natural integers, we have(np)=(nn−p)ifp≤n.(np)=(n−1p)+(n−1p−1)ifp≥1\begin{align} \binom{n}{p} = & \binom{n}{n-p} \quad \text{if} \quad p \leq n. \\ \binom{n}{p} = & \binom{n-1}{p} + \binom{n-1}{p-1} \quad \text{if} \quad p \geq 1 \end{align}(pn)=(pn)=(n−pn)ifp≤n.(pn−1)+(p−1n−1)ifp≥1ProofBy calculation, from the definition of (np)\binom{n}{p}(pn).